\(\int \frac {(e \cos (c+d x))^{15/2}}{(a+b \sin (c+d x))^4} \, dx\) [605]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (warning: unable to verify)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F(-1)]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 671 \[ \int \frac {(e \cos (c+d x))^{15/2}}{(a+b \sin (c+d x))^4} \, dx=\frac {39 a \left (11 a^4-17 a^2 b^2+6 b^4\right ) e^{15/2} \arctan \left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{16 b^{15/2} \left (-a^2+b^2\right )^{3/4} d}+\frac {39 a \left (11 a^4-17 a^2 b^2+6 b^4\right ) e^{15/2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{16 b^{15/2} \left (-a^2+b^2\right )^{3/4} d}+\frac {13 \left (231 a^4-203 a^2 b^2+20 b^4\right ) e^8 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{56 b^8 d \sqrt {e \cos (c+d x)}}-\frac {39 a^2 \left (11 a^4-17 a^2 b^2+6 b^4\right ) e^8 \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{16 b^8 \left (a^2-b \left (b-\sqrt {-a^2+b^2}\right )\right ) d \sqrt {e \cos (c+d x)}}-\frac {39 a^2 \left (11 a^4-17 a^2 b^2+6 b^4\right ) e^8 \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{16 b^8 \left (a^2-b \left (b+\sqrt {-a^2+b^2}\right )\right ) d \sqrt {e \cos (c+d x)}}-\frac {e (e \cos (c+d x))^{13/2}}{3 b d (a+b \sin (c+d x))^3}-\frac {13 e^3 (e \cos (c+d x))^{9/2} (11 a+4 b \sin (c+d x))}{84 b^3 d (a+b \sin (c+d x))^2}-\frac {39 e^5 (e \cos (c+d x))^{5/2} \left (77 a^2-20 b^2+22 a b \sin (c+d x)\right )}{280 b^5 d (a+b \sin (c+d x))}+\frac {13 e^7 \sqrt {e \cos (c+d x)} \left (21 a \left (11 a^2-6 b^2\right )-b \left (77 a^2-20 b^2\right ) \sin (c+d x)\right )}{56 b^7 d} \]

[Out]

39/16*a*(11*a^4-17*a^2*b^2+6*b^4)*e^(15/2)*arctan(b^(1/2)*(e*cos(d*x+c))^(1/2)/(-a^2+b^2)^(1/4)/e^(1/2))/b^(15
/2)/(-a^2+b^2)^(3/4)/d+39/16*a*(11*a^4-17*a^2*b^2+6*b^4)*e^(15/2)*arctanh(b^(1/2)*(e*cos(d*x+c))^(1/2)/(-a^2+b
^2)^(1/4)/e^(1/2))/b^(15/2)/(-a^2+b^2)^(3/4)/d-1/3*e*(e*cos(d*x+c))^(13/2)/b/d/(a+b*sin(d*x+c))^3-13/84*e^3*(e
*cos(d*x+c))^(9/2)*(11*a+4*b*sin(d*x+c))/b^3/d/(a+b*sin(d*x+c))^2-39/280*e^5*(e*cos(d*x+c))^(5/2)*(77*a^2-20*b
^2+22*a*b*sin(d*x+c))/b^5/d/(a+b*sin(d*x+c))+13/56*(231*a^4-203*a^2*b^2+20*b^4)*e^8*(cos(1/2*d*x+1/2*c)^2)^(1/
2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/b^8/d/(e*cos(d*x+c))^(1/2)-39/16*
a^2*(11*a^4-17*a^2*b^2+6*b^4)*e^8*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c
),2*b/(b-(-a^2+b^2)^(1/2)),2^(1/2))*cos(d*x+c)^(1/2)/b^8/d/(a^2-b*(b-(-a^2+b^2)^(1/2)))/(e*cos(d*x+c))^(1/2)-3
9/16*a^2*(11*a^4-17*a^2*b^2+6*b^4)*e^8*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+
1/2*c),2*b/(b+(-a^2+b^2)^(1/2)),2^(1/2))*cos(d*x+c)^(1/2)/b^8/d/(a^2-b*(b+(-a^2+b^2)^(1/2)))/(e*cos(d*x+c))^(1
/2)+13/56*e^7*(21*a*(11*a^2-6*b^2)-b*(77*a^2-20*b^2)*sin(d*x+c))*(e*cos(d*x+c))^(1/2)/b^7/d

Rubi [A] (verified)

Time = 1.23 (sec) , antiderivative size = 671, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {2772, 2942, 2944, 2946, 2721, 2720, 2781, 2886, 2884, 335, 218, 214, 211} \[ \int \frac {(e \cos (c+d x))^{15/2}}{(a+b \sin (c+d x))^4} \, dx=\frac {13 e^7 \sqrt {e \cos (c+d x)} \left (21 a \left (11 a^2-6 b^2\right )-b \left (77 a^2-20 b^2\right ) \sin (c+d x)\right )}{56 b^7 d}-\frac {39 e^5 (e \cos (c+d x))^{5/2} \left (77 a^2+22 a b \sin (c+d x)-20 b^2\right )}{280 b^5 d (a+b \sin (c+d x))}+\frac {39 a e^{15/2} \left (11 a^4-17 a^2 b^2+6 b^4\right ) \arctan \left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{16 b^{15/2} d \left (b^2-a^2\right )^{3/4}}+\frac {39 a e^{15/2} \left (11 a^4-17 a^2 b^2+6 b^4\right ) \text {arctanh}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{16 b^{15/2} d \left (b^2-a^2\right )^{3/4}}+\frac {13 e^8 \left (231 a^4-203 a^2 b^2+20 b^4\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{56 b^8 d \sqrt {e \cos (c+d x)}}-\frac {39 a^2 e^8 \left (11 a^4-17 a^2 b^2+6 b^4\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {b^2-a^2}},\frac {1}{2} (c+d x),2\right )}{16 b^8 d \left (a^2-b \left (b-\sqrt {b^2-a^2}\right )\right ) \sqrt {e \cos (c+d x)}}-\frac {39 a^2 e^8 \left (11 a^4-17 a^2 b^2+6 b^4\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {b^2-a^2}},\frac {1}{2} (c+d x),2\right )}{16 b^8 d \left (a^2-b \left (\sqrt {b^2-a^2}+b\right )\right ) \sqrt {e \cos (c+d x)}}-\frac {13 e^3 (e \cos (c+d x))^{9/2} (11 a+4 b \sin (c+d x))}{84 b^3 d (a+b \sin (c+d x))^2}-\frac {e (e \cos (c+d x))^{13/2}}{3 b d (a+b \sin (c+d x))^3} \]

[In]

Int[(e*Cos[c + d*x])^(15/2)/(a + b*Sin[c + d*x])^4,x]

[Out]

(39*a*(11*a^4 - 17*a^2*b^2 + 6*b^4)*e^(15/2)*ArcTan[(Sqrt[b]*Sqrt[e*Cos[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e]
)])/(16*b^(15/2)*(-a^2 + b^2)^(3/4)*d) + (39*a*(11*a^4 - 17*a^2*b^2 + 6*b^4)*e^(15/2)*ArcTanh[(Sqrt[b]*Sqrt[e*
Cos[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/(16*b^(15/2)*(-a^2 + b^2)^(3/4)*d) + (13*(231*a^4 - 203*a^2*b^2
+ 20*b^4)*e^8*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(56*b^8*d*Sqrt[e*Cos[c + d*x]]) - (39*a^2*(11*a^4
- 17*a^2*b^2 + 6*b^4)*e^8*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (c + d*x)/2, 2])/(16*b^8
*(a^2 - b*(b - Sqrt[-a^2 + b^2]))*d*Sqrt[e*Cos[c + d*x]]) - (39*a^2*(11*a^4 - 17*a^2*b^2 + 6*b^4)*e^8*Sqrt[Cos
[c + d*x]]*EllipticPi[(2*b)/(b + Sqrt[-a^2 + b^2]), (c + d*x)/2, 2])/(16*b^8*(a^2 - b*(b + Sqrt[-a^2 + b^2]))*
d*Sqrt[e*Cos[c + d*x]]) - (e*(e*Cos[c + d*x])^(13/2))/(3*b*d*(a + b*Sin[c + d*x])^3) - (13*e^3*(e*Cos[c + d*x]
)^(9/2)*(11*a + 4*b*Sin[c + d*x]))/(84*b^3*d*(a + b*Sin[c + d*x])^2) - (39*e^5*(e*Cos[c + d*x])^(5/2)*(77*a^2
- 20*b^2 + 22*a*b*Sin[c + d*x]))/(280*b^5*d*(a + b*Sin[c + d*x])) + (13*e^7*Sqrt[e*Cos[c + d*x]]*(21*a*(11*a^2
 - 6*b^2) - b*(77*a^2 - 20*b^2)*Sin[c + d*x]))/(56*b^7*d)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2772

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[g*(g*C
os[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Dist[g^2*((p - 1)/(b*(m + 1))), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a
^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && IntegersQ[2*m, 2*p]

Rule 2781

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> With[{q = Rt[
-a^2 + b^2, 2]}, Dist[-a/(2*q), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (Dist[b*(g/f), Sub
st[Int[1/(Sqrt[x]*(g^2*(a^2 - b^2) + b^2*x^2)), x], x, g*Cos[e + f*x]], x] - Dist[a/(2*q), Int[1/(Sqrt[g*Cos[e
 + f*x]]*(q - b*Cos[e + f*x])), x], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2942

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*((b*c*(m + p + 1) -
a*d*p + b*d*(m + 1)*Sin[e + f*x])/(b^2*f*(m + 1)*(m + p + 1))), x] + Dist[g^2*((p - 1)/(b^2*(m + 1)*(m + p + 1
))), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Simp[b*d*(m + 1) + (b*c*(m + p + 1) - a*d*p)*Si
n[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && N
eQ[m + p + 1, 0] && IntegerQ[2*m]

Rule 2944

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*((b*c*(m + p + 1) -
 a*d*p + b*d*(m + p)*Sin[e + f*x])/(b^2*f*(m + p)*(m + p + 1))), x] + Dist[g^2*((p - 1)/(b^2*(m + p)*(m + p +
1))), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*Simp[b*(a*d*m + b*c*(m + p + 1)) + (a*b*c*(m + p + 1
) - d*(a^2*p - b^2*(m + p)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2,
0] && GtQ[p, 1] && NeQ[m + p, 0] && NeQ[m + p + 1, 0] && IntegerQ[2*m]

Rule 2946

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]))/((a_) + (b_.)*sin[(e_.) + (
f_.)*(x_)]), x_Symbol] :> Dist[d/b, Int[(g*Cos[e + f*x])^p, x], x] + Dist[(b*c - a*d)/b, Int[(g*Cos[e + f*x])^
p/(a + b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {e (e \cos (c+d x))^{13/2}}{3 b d (a+b \sin (c+d x))^3}-\frac {\left (13 e^2\right ) \int \frac {(e \cos (c+d x))^{11/2} \sin (c+d x)}{(a+b \sin (c+d x))^3} \, dx}{6 b} \\ & = -\frac {e (e \cos (c+d x))^{13/2}}{3 b d (a+b \sin (c+d x))^3}-\frac {13 e^3 (e \cos (c+d x))^{9/2} (11 a+4 b \sin (c+d x))}{84 b^3 d (a+b \sin (c+d x))^2}+\frac {\left (39 e^4\right ) \int \frac {(e \cos (c+d x))^{7/2} \left (-2 b-\frac {11}{2} a \sin (c+d x)\right )}{(a+b \sin (c+d x))^2} \, dx}{28 b^3} \\ & = -\frac {e (e \cos (c+d x))^{13/2}}{3 b d (a+b \sin (c+d x))^3}-\frac {13 e^3 (e \cos (c+d x))^{9/2} (11 a+4 b \sin (c+d x))}{84 b^3 d (a+b \sin (c+d x))^2}-\frac {39 e^5 (e \cos (c+d x))^{5/2} \left (77 a^2-20 b^2+22 a b \sin (c+d x)\right )}{280 b^5 d (a+b \sin (c+d x))}-\frac {\left (39 e^6\right ) \int \frac {(e \cos (c+d x))^{3/2} \left (\frac {11 a b}{2}+\frac {1}{4} \left (77 a^2-20 b^2\right ) \sin (c+d x)\right )}{a+b \sin (c+d x)} \, dx}{28 b^5} \\ & = -\frac {e (e \cos (c+d x))^{13/2}}{3 b d (a+b \sin (c+d x))^3}-\frac {13 e^3 (e \cos (c+d x))^{9/2} (11 a+4 b \sin (c+d x))}{84 b^3 d (a+b \sin (c+d x))^2}-\frac {39 e^5 (e \cos (c+d x))^{5/2} \left (77 a^2-20 b^2+22 a b \sin (c+d x)\right )}{280 b^5 d (a+b \sin (c+d x))}+\frac {13 e^7 \sqrt {e \cos (c+d x)} \left (21 a \left (11 a^2-6 b^2\right )-b \left (77 a^2-20 b^2\right ) \sin (c+d x)\right )}{56 b^7 d}-\frac {\left (13 e^8\right ) \int \frac {-\frac {1}{4} a b \left (77 a^2-53 b^2\right )-\frac {1}{8} \left (231 a^4-203 a^2 b^2+20 b^4\right ) \sin (c+d x)}{\sqrt {e \cos (c+d x)} (a+b \sin (c+d x))} \, dx}{14 b^7} \\ & = -\frac {e (e \cos (c+d x))^{13/2}}{3 b d (a+b \sin (c+d x))^3}-\frac {13 e^3 (e \cos (c+d x))^{9/2} (11 a+4 b \sin (c+d x))}{84 b^3 d (a+b \sin (c+d x))^2}-\frac {39 e^5 (e \cos (c+d x))^{5/2} \left (77 a^2-20 b^2+22 a b \sin (c+d x)\right )}{280 b^5 d (a+b \sin (c+d x))}+\frac {13 e^7 \sqrt {e \cos (c+d x)} \left (21 a \left (11 a^2-6 b^2\right )-b \left (77 a^2-20 b^2\right ) \sin (c+d x)\right )}{56 b^7 d}-\frac {\left (39 a \left (11 a^4-17 a^2 b^2+6 b^4\right ) e^8\right ) \int \frac {1}{\sqrt {e \cos (c+d x)} (a+b \sin (c+d x))} \, dx}{16 b^8}+\frac {\left (13 \left (231 a^4-203 a^2 b^2+20 b^4\right ) e^8\right ) \int \frac {1}{\sqrt {e \cos (c+d x)}} \, dx}{112 b^8} \\ & = -\frac {e (e \cos (c+d x))^{13/2}}{3 b d (a+b \sin (c+d x))^3}-\frac {13 e^3 (e \cos (c+d x))^{9/2} (11 a+4 b \sin (c+d x))}{84 b^3 d (a+b \sin (c+d x))^2}-\frac {39 e^5 (e \cos (c+d x))^{5/2} \left (77 a^2-20 b^2+22 a b \sin (c+d x)\right )}{280 b^5 d (a+b \sin (c+d x))}+\frac {13 e^7 \sqrt {e \cos (c+d x)} \left (21 a \left (11 a^2-6 b^2\right )-b \left (77 a^2-20 b^2\right ) \sin (c+d x)\right )}{56 b^7 d}+\frac {\left (39 a^2 \left (11 a^4-17 a^2 b^2+6 b^4\right ) e^8\right ) \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {-a^2+b^2}-b \cos (c+d x)\right )} \, dx}{32 b^8 \sqrt {-a^2+b^2}}+\frac {\left (39 a^2 \left (11 a^4-17 a^2 b^2+6 b^4\right ) e^8\right ) \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {-a^2+b^2}+b \cos (c+d x)\right )} \, dx}{32 b^8 \sqrt {-a^2+b^2}}-\frac {\left (39 a \left (11 a^4-17 a^2 b^2+6 b^4\right ) e^9\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (\left (a^2-b^2\right ) e^2+b^2 x^2\right )} \, dx,x,e \cos (c+d x)\right )}{16 b^7 d}+\frac {\left (13 \left (231 a^4-203 a^2 b^2+20 b^4\right ) e^8 \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{112 b^8 \sqrt {e \cos (c+d x)}} \\ & = \frac {13 \left (231 a^4-203 a^2 b^2+20 b^4\right ) e^8 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{56 b^8 d \sqrt {e \cos (c+d x)}}-\frac {e (e \cos (c+d x))^{13/2}}{3 b d (a+b \sin (c+d x))^3}-\frac {13 e^3 (e \cos (c+d x))^{9/2} (11 a+4 b \sin (c+d x))}{84 b^3 d (a+b \sin (c+d x))^2}-\frac {39 e^5 (e \cos (c+d x))^{5/2} \left (77 a^2-20 b^2+22 a b \sin (c+d x)\right )}{280 b^5 d (a+b \sin (c+d x))}+\frac {13 e^7 \sqrt {e \cos (c+d x)} \left (21 a \left (11 a^2-6 b^2\right )-b \left (77 a^2-20 b^2\right ) \sin (c+d x)\right )}{56 b^7 d}-\frac {\left (39 a \left (11 a^4-17 a^2 b^2+6 b^4\right ) e^9\right ) \text {Subst}\left (\int \frac {1}{\left (a^2-b^2\right ) e^2+b^2 x^4} \, dx,x,\sqrt {e \cos (c+d x)}\right )}{8 b^7 d}+\frac {\left (39 a^2 \left (11 a^4-17 a^2 b^2+6 b^4\right ) e^8 \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \left (\sqrt {-a^2+b^2}-b \cos (c+d x)\right )} \, dx}{32 b^8 \sqrt {-a^2+b^2} \sqrt {e \cos (c+d x)}}+\frac {\left (39 a^2 \left (11 a^4-17 a^2 b^2+6 b^4\right ) e^8 \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \left (\sqrt {-a^2+b^2}+b \cos (c+d x)\right )} \, dx}{32 b^8 \sqrt {-a^2+b^2} \sqrt {e \cos (c+d x)}} \\ & = \frac {13 \left (231 a^4-203 a^2 b^2+20 b^4\right ) e^8 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{56 b^8 d \sqrt {e \cos (c+d x)}}-\frac {39 a^2 \left (11 a^4-17 a^2 b^2+6 b^4\right ) e^8 \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{16 b^8 \sqrt {-a^2+b^2} \left (b-\sqrt {-a^2+b^2}\right ) d \sqrt {e \cos (c+d x)}}+\frac {39 a^2 \left (11 a^4-17 a^2 b^2+6 b^4\right ) e^8 \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{16 b^8 \sqrt {-a^2+b^2} \left (b+\sqrt {-a^2+b^2}\right ) d \sqrt {e \cos (c+d x)}}-\frac {e (e \cos (c+d x))^{13/2}}{3 b d (a+b \sin (c+d x))^3}-\frac {13 e^3 (e \cos (c+d x))^{9/2} (11 a+4 b \sin (c+d x))}{84 b^3 d (a+b \sin (c+d x))^2}-\frac {39 e^5 (e \cos (c+d x))^{5/2} \left (77 a^2-20 b^2+22 a b \sin (c+d x)\right )}{280 b^5 d (a+b \sin (c+d x))}+\frac {13 e^7 \sqrt {e \cos (c+d x)} \left (21 a \left (11 a^2-6 b^2\right )-b \left (77 a^2-20 b^2\right ) \sin (c+d x)\right )}{56 b^7 d}+\frac {\left (39 a \left (11 a^4-17 a^2 b^2+6 b^4\right ) e^8\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} e-b x^2} \, dx,x,\sqrt {e \cos (c+d x)}\right )}{16 b^7 \sqrt {-a^2+b^2} d}+\frac {\left (39 a \left (11 a^4-17 a^2 b^2+6 b^4\right ) e^8\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} e+b x^2} \, dx,x,\sqrt {e \cos (c+d x)}\right )}{16 b^7 \sqrt {-a^2+b^2} d} \\ & = \frac {39 a \left (11 a^4-17 a^2 b^2+6 b^4\right ) e^{15/2} \arctan \left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{16 b^{15/2} \left (-a^2+b^2\right )^{3/4} d}+\frac {39 a \left (11 a^4-17 a^2 b^2+6 b^4\right ) e^{15/2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{16 b^{15/2} \left (-a^2+b^2\right )^{3/4} d}+\frac {13 \left (231 a^4-203 a^2 b^2+20 b^4\right ) e^8 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{56 b^8 d \sqrt {e \cos (c+d x)}}-\frac {39 a^2 \left (11 a^4-17 a^2 b^2+6 b^4\right ) e^8 \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{16 b^8 \sqrt {-a^2+b^2} \left (b-\sqrt {-a^2+b^2}\right ) d \sqrt {e \cos (c+d x)}}+\frac {39 a^2 \left (11 a^4-17 a^2 b^2+6 b^4\right ) e^8 \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{16 b^8 \sqrt {-a^2+b^2} \left (b+\sqrt {-a^2+b^2}\right ) d \sqrt {e \cos (c+d x)}}-\frac {e (e \cos (c+d x))^{13/2}}{3 b d (a+b \sin (c+d x))^3}-\frac {13 e^3 (e \cos (c+d x))^{9/2} (11 a+4 b \sin (c+d x))}{84 b^3 d (a+b \sin (c+d x))^2}-\frac {39 e^5 (e \cos (c+d x))^{5/2} \left (77 a^2-20 b^2+22 a b \sin (c+d x)\right )}{280 b^5 d (a+b \sin (c+d x))}+\frac {13 e^7 \sqrt {e \cos (c+d x)} \left (21 a \left (11 a^2-6 b^2\right )-b \left (77 a^2-20 b^2\right ) \sin (c+d x)\right )}{56 b^7 d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 24.57 (sec) , antiderivative size = 2102, normalized size of antiderivative = 3.13 \[ \int \frac {(e \cos (c+d x))^{15/2}}{(a+b \sin (c+d x))^4} \, dx=\text {Result too large to show} \]

[In]

Integrate[(e*Cos[c + d*x])^(15/2)/(a + b*Sin[c + d*x])^4,x]

[Out]

((e*Cos[c + d*x])^(15/2)*((-2*(4410*a^3*b - 3418*a*b^3)*(a + b*Sqrt[1 - Cos[c + d*x]^2])*((5*a*(a^2 - b^2)*App
ellF1[1/4, 1/2, 1, 5/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)]*Sqrt[Cos[c + d*x]])/(Sqrt[1 - Cos[c
 + d*x]^2]*(5*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)] - 2*(2
*b^2*AppellF1[5/4, 1/2, 2, 9/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)] + (-a^2 + b^2)*AppellF1[5/4
, 3/2, 1, 9/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)])*Cos[c + d*x]^2)*(a^2 + b^2*(-1 + Cos[c + d*
x]^2))) - ((1/8 - I/8)*Sqrt[b]*(2*ArcTan[1 - ((1 + I)*Sqrt[b]*Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^(1/4)] - 2*ArcT
an[1 + ((1 + I)*Sqrt[b]*Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^(1/4)] + Log[Sqrt[-a^2 + b^2] - (1 + I)*Sqrt[b]*(-a^2
 + b^2)^(1/4)*Sqrt[Cos[c + d*x]] + I*b*Cos[c + d*x]] - Log[Sqrt[-a^2 + b^2] + (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/
4)*Sqrt[Cos[c + d*x]] + I*b*Cos[c + d*x]]))/(-a^2 + b^2)^(3/4))*Sin[c + d*x])/(Sqrt[1 - Cos[c + d*x]^2]*(a + b
*Sin[c + d*x])) + ((5600*a^3*b - 3472*a*b^3)*(a + b*Sqrt[1 - Cos[c + d*x]^2])*Cos[2*(c + d*x)]*(((1/2 - I/2)*(
-2*a^2 + b^2)*ArcTan[1 - ((1 + I)*Sqrt[b]*Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^(1/4)])/(b^(3/2)*(-a^2 + b^2)^(3/4)
) - ((1/2 - I/2)*(-2*a^2 + b^2)*ArcTan[1 + ((1 + I)*Sqrt[b]*Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^(1/4)])/(b^(3/2)*
(-a^2 + b^2)^(3/4)) + (4*Sqrt[Cos[c + d*x]])/b - (4*a*AppellF1[5/4, 1/2, 1, 9/4, Cos[c + d*x]^2, (b^2*Cos[c +
d*x]^2)/(-a^2 + b^2)]*Cos[c + d*x]^(5/2))/(5*(a^2 - b^2)) + (10*a*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Cos[c
 + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)]*Sqrt[Cos[c + d*x]])/(Sqrt[1 - Cos[c + d*x]^2]*(5*(a^2 - b^2)*App
ellF1[1/4, 1/2, 1, 5/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)] - 2*(2*b^2*AppellF1[5/4, 1/2, 2, 9/
4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)] + (-a^2 + b^2)*AppellF1[5/4, 3/2, 1, 9/4, Cos[c + d*x]^2
, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)])*Cos[c + d*x]^2)*(a^2 + b^2*(-1 + Cos[c + d*x]^2))) + ((1/4 - I/4)*(-2*a^
2 + b^2)*Log[Sqrt[-a^2 + b^2] - (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[c + d*x]] + I*b*Cos[c + d*x]])/(b^
(3/2)*(-a^2 + b^2)^(3/4)) - ((1/4 - I/4)*(-2*a^2 + b^2)*Log[Sqrt[-a^2 + b^2] + (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1
/4)*Sqrt[Cos[c + d*x]] + I*b*Cos[c + d*x]])/(b^(3/2)*(-a^2 + b^2)^(3/4)))*Sin[c + d*x])/(Sqrt[1 - Cos[c + d*x]
^2]*(-1 + 2*Cos[c + d*x]^2)*(a + b*Sin[c + d*x])) - (2*(3815*a^4 - 6251*a^2*b^2 + 1300*b^4)*(a + b*Sqrt[1 - Co
s[c + d*x]^2])*((5*b*(a^2 - b^2)*AppellF1[1/4, -1/2, 1, 5/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)
]*Sqrt[Cos[c + d*x]]*Sqrt[1 - Cos[c + d*x]^2])/((-5*(a^2 - b^2)*AppellF1[1/4, -1/2, 1, 5/4, Cos[c + d*x]^2, (b
^2*Cos[c + d*x]^2)/(-a^2 + b^2)] + 2*(2*b^2*AppellF1[5/4, -1/2, 2, 9/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(
-a^2 + b^2)] + (a^2 - b^2)*AppellF1[5/4, 1/2, 1, 9/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)])*Cos[
c + d*x]^2)*(a^2 + b^2*(-1 + Cos[c + d*x]^2))) + (a*(-2*ArcTan[1 - (Sqrt[2]*Sqrt[b]*Sqrt[Cos[c + d*x]])/(a^2 -
 b^2)^(1/4)] + 2*ArcTan[1 + (Sqrt[2]*Sqrt[b]*Sqrt[Cos[c + d*x]])/(a^2 - b^2)^(1/4)] - Log[Sqrt[a^2 - b^2] - Sq
rt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[c + d*x]] + b*Cos[c + d*x]] + Log[Sqrt[a^2 - b^2] + Sqrt[2]*Sqrt[b]*(
a^2 - b^2)^(1/4)*Sqrt[Cos[c + d*x]] + b*Cos[c + d*x]]))/(4*Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(3/4)))*Sin[c + d*x]^2)
/((1 - Cos[c + d*x]^2)*(a + b*Sin[c + d*x]))))/(560*b^7*d*Cos[c + d*x]^(15/2)) + ((e*Cos[c + d*x])^(15/2)*Sec[
c + d*x]^7*((-4*a*Cos[2*(c + d*x)])/(5*b^5) + ((-280*a^2 + 79*b^2)*Sin[c + d*x])/(42*b^6) - (-a^2 + b^2)^3/(3*
b^7*(a + b*Sin[c + d*x])^3) - (37*a*(a^2 - b^2)^2)/(12*b^7*(a + b*Sin[c + d*x])^2) + ((-a^2 + b^2)*(-393*a^2 +
 76*b^2))/(24*b^7*(a + b*Sin[c + d*x])) + Sin[3*(c + d*x)]/(14*b^4)))/d

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 372.50 (sec) , antiderivative size = 4938, normalized size of antiderivative = 7.36

method result size
default \(\text {Expression too large to display}\) \(4938\)

[In]

int((e*cos(d*x+c))^(15/2)/(a+b*sin(d*x+c))^4,x,method=_RETURNVERBOSE)

[Out]

(-16*e^8*a*b*(1/10/b^8/e*(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)*(4*sin(1/2*d*x+1/2*c)^4*b^2-4*sin(1/2*d*x+1/2*c)^
2*b^2-25*a^2+16*b^2)+2*(7*a^4-10*a^2*b^2+3*b^4)/b^8*(e^2*(a^2-b^2)/b^2)^(1/4)*2^(1/2)*(ln((2*e*cos(1/2*d*x+1/2
*c)^2-e+(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2))/(2*e*c
os(1/2*d*x+1/2*c)^2-e-(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)
^(1/2)))+2*arctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(
1/4))+2*arctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)-(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4
)))/(16*a^2-16*b^2)/e-1/16*(4*a^6-9*a^4*b^2+6*a^2*b^4-b^6)/b^8*(3*(ln((2*e*cos(1/2*d*x+1/2*c)^2-e+(e^2*(a^2-b^
2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2))/(2*e*cos(1/2*d*x+1/2*c)^2-
e-(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2)))+2*arctan((2
^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4))+2*arctan((2^(1
/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)-(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4)))*(4*cos(1/2*d*x+1
/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)*2^(1/2)*(e^2*(a^2-b^2)/b^2)^(1/4)+(8*a^2-8*b^2)*(2*e*cos(1/2*d*x+1
/2*c)^2-e)^(1/2))/e/(a-b)^2/(a+b)^2/(4*cos(1/2*d*x+1/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)+1/512*(9*a^8-2
8*a^6*b^2+30*a^4*b^4-12*a^2*b^6+b^8)/b^8*(21*(e^2*(a^2-b^2)/b^2)^(1/4)*(4*sin(1/2*d*x+1/2*c)^4*b^2-4*sin(1/2*d
*x+1/2*c)^2*b^2+a^2)^2*2^(1/2)*ln((2*e*cos(1/2*d*x+1/2*c)^2-e+(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c
)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2))/(2*e*cos(1/2*d*x+1/2*c)^2-e-(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos
(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2)))+42*(e^2*(a^2-b^2)/b^2)^(1/4)*(4*sin(1/2*d*x+1/2
*c)^4*b^2-4*sin(1/2*d*x+1/2*c)^2*b^2+a^2)^2*2^(1/2)*arctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)-(e^2*(a
^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4))+42*(e^2*(a^2-b^2)/b^2)^(1/4)*(4*sin(1/2*d*x+1/2*c)^4*b^2-4*sin(
1/2*d*x+1/2*c)^2*b^2+a^2)^2*2^(1/2)*arctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/
4))/(e^2*(a^2-b^2)/b^2)^(1/4))+88*(4/11*(7*cos(1/2*d*x+1/2*c)^4-7*cos(1/2*d*x+1/2*c)^2-1)*b^2+a^2)*(a-b)*(2*e*
cos(1/2*d*x+1/2*c)^2-e)^(1/2)*(a+b))/e/(a^2-b^2)^3/(4*cos(1/2*d*x+1/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)
^2-1/1024*a^2*(a^8-4*a^6*b^2+6*a^4*b^4-4*a^2*b^6+b^8)/b^8*(77*(4*sin(1/2*d*x+1/2*c)^4*b^2-4*sin(1/2*d*x+1/2*c)
^2*b^2+a^2)^3*2^(1/2)*(ln((2*e*cos(1/2*d*x+1/2*c)^2-e+(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(
1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2))/(2*e*cos(1/2*d*x+1/2*c)^2-e-(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x
+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2)))+2*arctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)+(e
^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4))+2*arctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)-(e^2*
(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4)))*(e^2*(a^2-b^2)/b^2)^(1/4)+408*(16/51*(2/3+77/3*cos(1/2*d*x+1
/2*c)^8-154/3*cos(1/2*d*x+1/2*c)^6+22*cos(1/2*d*x+1/2*c)^4+11/3*cos(1/2*d*x+1/2*c)^2)*b^4+88/17*a^2*(cos(1/2*d
*x+1/2*c)^4-cos(1/2*d*x+1/2*c)^2-3/22)*b^2+a^4)*(a-b)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*(a+b))/(a-b)^4/(4*sin
(1/2*d*x+1/2*c)^4*b^2-4*sin(1/2*d*x+1/2*c)^2*b^2+a^2)^3/(a+b)^4/e)-2*(e*(2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x
+1/2*c)^2)^(1/2)*e^8*(1/16/b^10*(-84*a^6+140*a^4*b^2-60*a^2*b^4+4*b^6)*sum(1/_alpha/(2*_alpha^2-1)*(2^(1/2)/(e
*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)*arctanh(1/2*e*(4*_alpha^2-3)/(4*a^2-3*b^2)*(4*a^2*cos(1/2*d*x+1/2*c)^2-
3*cos(1/2*d*x+1/2*c)^2*b^2+b^2*_alpha^2-3*a^2+2*b^2)*2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-e*(2*s
in(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2))+8*b^2/a^2*_alpha*(_alpha^2-1)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(
-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*sin(1/2*d*x+1/2*c)^2*(2*sin(1/2*d*x+1/2*c)^2-1))^(1/2)*EllipticPi(cos(1/2
*d*x+1/2*c),-4*b^2/a^2*(_alpha^2-1),2^(1/2))),_alpha=RootOf(4*_Z^4*b^2-4*_Z^2*b^2+a^2))+1/b^8*(81*a^8-196*a^6*
b^2+150*a^4*b^4-36*a^2*b^6+b^8)*(1/2*b^2/(a^2-b^2)/a^2/e*cos(1/2*d*x+1/2*c)*(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/
2*d*x+1/2*c)^2))^(1/2)/(4*cos(1/2*d*x+1/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)-1/4/(a^2-b^2)/a^2*(sin(1/2*
d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)
*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/64/a^2/b^2*sum((-5*a^2+2*b^2)/(a-b)/(a+b)/(2*_alpha^2-1)/_alpha*(2^(1
/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)*arctanh(1/2*e*(4*_alpha^2-3)/(4*a^2-3*b^2)*(4*a^2*cos(1/2*d*x+1/2
*c)^2-3*cos(1/2*d*x+1/2*c)^2*b^2+b^2*_alpha^2-3*a^2+2*b^2)*2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-
e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2))+8*b^2/a^2*_alpha*(_alpha^2-1)*(sin(1/2*d*x+1/2*c)^2)^(
1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*sin(1/2*d*x+1/2*c)^2*(2*sin(1/2*d*x+1/2*c)^2-1))^(1/2)*EllipticPi(c
os(1/2*d*x+1/2*c),-4*b^2/a^2*(_alpha^2-1),2^(1/2))),_alpha=RootOf(4*_Z^4*b^2-4*_Z^2*b^2+a^2)))+8*a^4*(a^8-4*a^
6*b^2+6*a^4*b^4-4*a^2*b^6+b^8)/b^8*(1/6*b^2/(a^2-b^2)/a^2/e*cos(1/2*d*x+1/2*c)*(-e*(2*sin(1/2*d*x+1/2*c)^4-sin
(1/2*d*x+1/2*c)^2))^(1/2)/(4*cos(1/2*d*x+1/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)^3+1/48*b^2*(21*a^2-10*b^
2)/(a^2-b^2)^2/a^4/e*cos(1/2*d*x+1/2*c)*(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(4*cos(1/2*d*
x+1/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)^2+1/192*b^2*(201*a^4-184*a^2*b^2+60*b^4)/(a^2-b^2)^3/a^6/e*cos(
1/2*d*x+1/2*c)*(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(4*cos(1/2*d*x+1/2*c)^4*b^2-4*cos(1/2*
d*x+1/2*c)^2*b^2+a^2)-1/384*(201*a^4-184*a^2*b^2+60*b^4)/(a^2-b^2)^3/a^6*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(
1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c
),2^(1/2))-1/2048/a^6/b^2*sum((-195*a^6+234*a^4*b^2-156*a^2*b^4+40*b^6)/(a-b)^3/(a+b)^3/(2*_alpha^2-1)/_alpha*
(2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)*arctanh(1/2*e*(4*_alpha^2-3)/(4*a^2-3*b^2)*(4*a^2*cos(1/2*d*
x+1/2*c)^2-3*cos(1/2*d*x+1/2*c)^2*b^2+b^2*_alpha^2-3*a^2+2*b^2)*2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/
2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2))+8*b^2/a^2*_alpha*(_alpha^2-1)*(sin(1/2*d*x+1/2*c)
^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*sin(1/2*d*x+1/2*c)^2*(2*sin(1/2*d*x+1/2*c)^2-1))^(1/2)*Ellipti
cPi(cos(1/2*d*x+1/2*c),-4*b^2/a^2*(_alpha^2-1),2^(1/2))),_alpha=RootOf(4*_Z^4*b^2-4*_Z^2*b^2+a^2)))-8*a^2*(5*a
^8-16*a^6*b^2+18*a^4*b^4-8*a^2*b^6+b^8)/b^8*(1/4*b^2/(a^2-b^2)/a^2/e*cos(1/2*d*x+1/2*c)*(-e*(2*sin(1/2*d*x+1/2
*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(4*cos(1/2*d*x+1/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)^2+1/16*b^2*(13*
a^2-6*b^2)/(a^2-b^2)^2/a^4/e*cos(1/2*d*x+1/2*c)*(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(4*co
s(1/2*d*x+1/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)-1/32*(13*a^2-6*b^2)/(a^2-b^2)^2/a^4*(sin(1/2*d*x+1/2*c)
^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)*EllipticF
(cos(1/2*d*x+1/2*c),2^(1/2))-3/512/a^4/b^2*sum((-15*a^4+12*a^2*b^2-4*b^4)/(a-b)^2/(a+b)^2/(2*_alpha^2-1)/_alph
a*(2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)*arctanh(1/2*e*(4*_alpha^2-3)/(4*a^2-3*b^2)*(4*a^2*cos(1/2*
d*x+1/2*c)^2-3*cos(1/2*d*x+1/2*c)^2*b^2+b^2*_alpha^2-3*a^2+2*b^2)*2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(
1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2))+8*b^2/a^2*_alpha*(_alpha^2-1)*(sin(1/2*d*x+1/2*
c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*sin(1/2*d*x+1/2*c)^2*(2*sin(1/2*d*x+1/2*c)^2-1))^(1/2)*Ellip
ticPi(cos(1/2*d*x+1/2*c),-4*b^2/a^2*(_alpha^2-1),2^(1/2))),_alpha=RootOf(4*_Z^4*b^2-4*_Z^2*b^2+a^2)))+1/21/b^8
/(-2*sin(1/2*d*x+1/2*c)^4*e+sin(1/2*d*x+1/2*c)^2*e)^(1/2)*(48*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8*b^4-72*c
os(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6*b^4-280*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a^2*b^2+112*cos(1/2*d*x
+1/2*c)*sin(1/2*d*x+1/2*c)^4*b^4+140*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*a^2*b^2-44*cos(1/2*d*x+1/2*c)*sin
(1/2*d*x+1/2*c)^2*b^4+735*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+
1/2*c),2^(1/2))*a^4-700*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/
2*c),2^(1/2))*a^2*b^2+82*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1
/2*c),2^(1/2))*b^4))/sin(1/2*d*x+1/2*c)/(e*(2*cos(1/2*d*x+1/2*c)^2-1))^(1/2))/d

Fricas [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{15/2}}{(a+b \sin (c+d x))^4} \, dx=\text {Timed out} \]

[In]

integrate((e*cos(d*x+c))^(15/2)/(a+b*sin(d*x+c))^4,x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{15/2}}{(a+b \sin (c+d x))^4} \, dx=\text {Timed out} \]

[In]

integrate((e*cos(d*x+c))**(15/2)/(a+b*sin(d*x+c))**4,x)

[Out]

Timed out

Maxima [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{15/2}}{(a+b \sin (c+d x))^4} \, dx=\text {Timed out} \]

[In]

integrate((e*cos(d*x+c))^(15/2)/(a+b*sin(d*x+c))^4,x, algorithm="maxima")

[Out]

Timed out

Giac [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{15/2}}{(a+b \sin (c+d x))^4} \, dx=\text {Timed out} \]

[In]

integrate((e*cos(d*x+c))^(15/2)/(a+b*sin(d*x+c))^4,x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{15/2}}{(a+b \sin (c+d x))^4} \, dx=\int \frac {{\left (e\,\cos \left (c+d\,x\right )\right )}^{15/2}}{{\left (a+b\,\sin \left (c+d\,x\right )\right )}^4} \,d x \]

[In]

int((e*cos(c + d*x))^(15/2)/(a + b*sin(c + d*x))^4,x)

[Out]

int((e*cos(c + d*x))^(15/2)/(a + b*sin(c + d*x))^4, x)